Interactive feature space extension for multidimensional data projection

نویسندگان

  • Daniel Pérez-López
  • Leishi Zhang
  • Matthias Schäfer
  • Tobias Schreck
  • Daniel A. Keim
  • Ignacio Díaz
چکیده

Projecting multi dimensional data to a lower dimensional visual display is a commonly used approach for identifying and analyzing patterns in data. Many dimensionality reduction techniques exist for generating visual embeddings, but it is often hard to avoid cluttered projections when the data is large in size and noisy. For many application users who are not machine learning experts, it is difficult to control the process in order to improve the “readability” of the projection and at the same time to understand their quality. In this paper, we propose a simple interactive feature transformation approach that allows the analyst to de clutter the visualization by gradually transforming the original feature space based on existing class knowledge. By changing a single parameter, the user can easily decide the desired trade off between structural preservation and the visual quality during the transforming process. The proposed approach integrates semi interactive feature transformation techniques as well as a variety of quality measures to help analysts generate uncluttered projections and understand their quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Visualization and Feature Transformation for Multidimensional Data Projection

Projecfing multidimensional data to a lower-dimensional visual displayas a scatter-plot-llke visualization is a common approach for analyzing mullidimensional data. Many dimension reduclion techniques existfor performing such a tasle, but the quallty of projections varies in terms of both preserving the original data structure and avoiding cluttered visual displays. In this papel; we propose an...

متن کامل

Interactive Design of Multidimensional Data Projection Layout

Projection methods support effective visualizations of multidimensional data. Linear projections are an important subclass, as they allow for interactive visual exploration of the data space and feature sensitivity analysis. The user interaction is usually based on an iterative modification of the projection matrix elements, for example, by the use of a star coordinate widget. However, such int...

متن کامل

ProxiViz: an Interactive Visualization Technique to Overcome Multidimensional Scaling Artifacts

Projection algorithms such as multidimensional scaling are often used to visualize high-dimensional data. However, when attempting to interpret the visualization of the resulting 2D projection, users are faced with artifacts. This poster introduces ProxiViz: an interactive technique to provide better insights about the original data-space. Primary results of a controlled experiment show that Pr...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2015